Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum.
نویسندگان
چکیده
The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium.
منابع مشابه
Biochemical Changes during Growth and Encystment of the Cellular Slime Mold Polysphondylium Pallidum
The growth of the cellular slime mold, Polysphondylium pallidum, was studied on a semidefined medium in shaken suspension. When the medium contained large quantities of particulate material, growth was more rapid and the cellular size and protein content were smaller than when growth occurred on a medium containing less particulate material. The cellular levels of DNA, RNA, and protein; of lyso...
متن کاملPhagocytosis by the Cellular Slime Mold Polysphondylium Pallidum during Growth and Development
The phagocytic ability of amoebae of the cellular slime mold Polysphondylium pallidum, grown in shaken suspension, was examined. An established quantitative assay of the uptake of polystyrene (PS) beads was shown to be valid for this organism. The kinetics of phagocytosis were determined, and estimates of the concentration of PS beads necessary to achieve half-maximal phagocytic velocity (K(p))...
متن کاملAlpha-mannosidase and microcyst differentiation in the cellular slime mold Polysphondylium pallidum.
The intracellular and extracellular pattern of alpha-mannosidase (EC 3.2.1.24) activity was studied during microcyst differentiation in the cellular slime mold, Polysphondylium pallidum. The evidence suggests that microcyst differentiation requires continuous protein synthesis. alpha-Mannosidase activity is present in amoebae and increases with differentiation, and the data indicate that this i...
متن کاملIdentification and purification of an endogenous receptor for the lectin pallidin from Polysphondylium pallidum
We report the identification and purification of an endogenous carbohydrate-containing receptor of pallidin, the cell surface lectin implicated in mediating cell-cell adhesion in the cellular slime mold Polysphondylium pallidum. The receptor is identified in an aqueous extract of crude P. pallidum membranes as a potent inhibitor of the hemagglutination activity of pallidin. The inhibitor is pur...
متن کاملMutants of Polysphondylium pallidum altered in cell aggregation and in the expression of a carbohydrate epitope on cell surface glycoproteins.
Mutants of the cellular slime mold Polysphondylium pallidum have been selected using a cell sorter and a fluorescentlabeled monoclonal antibody, mAb 293. This antibody blocks cell adhesion when applied as Fab, and recognizes a carbohydrate epitope containing L-fucose. This epitope is expressed on the cell surface and is present on >10 membrane glycoproteins of different apparent mol. wts. Twent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 109 ( Pt 5) شماره
صفحات -
تاریخ انتشار 1996